SALINITY STRESS EFFECTS ON BREAD WHEAT GROWTH, PHYSIOLOGICAL AND BIOCHEMICAL TRAITS AT THE EARLY SPIKE EMERGENCE STAGE

Main Article Content

OUHADDACH MOUSSA
ELYACOUBI HOUDA
OUALLAL IMANE
ECH-CHADDADI SARA
MOUHSSINE FATINE
DOUAIK AHMED
ROCHDI ATMANE

Abstract

Greenhouse pot experiments were performed to study genotypic differences in response to salinity (0, 50, 75 and 100 mM of NaCl) stress using two (Ashtar and Salama) bread wheat (Triticum aestivum L.) varieties. The objectif of current study was undertaken to know the effects of salinity stress on some physiological and biochemical characteristics of wheat. Growth, physiological and biochemical salt stress response characteristics were compared at the early spike emergence stage. Results showed that both genotypes were varied significantly for all traits under all levels of salt stress. Salinity stress caused a decrease in plant height, leaf number, leaf area, and specific leaf area, root fresh and dry weight, root K+ content and K+/Na+ ratio. However, Salt treatment increased the relative water content, the chl ‘a’ and ‘b’ contents, the membrane stability index and the Na+ content. Among the varieties, growth of the genotype ‘Achtar’ was found much better than ‘Salama’, with the maintaining a higher shoot and root biomass at the early spike emergence stage.

Keywords:
Wheat, spike emergence, salinity, growth, physiological and biochemical traits.

Article Details

How to Cite
MOUSSA, O., HOUDA, E., IMANE, O., SARA, E.-C., FATINE, M., AHMED, D., & ATMANE, R. (2019). SALINITY STRESS EFFECTS ON BREAD WHEAT GROWTH, PHYSIOLOGICAL AND BIOCHEMICAL TRAITS AT THE EARLY SPIKE EMERGENCE STAGE. PLANT CELL BIOTECHNOLOGY AND MOLECULAR BIOLOGY, 20(17 & 18), 813–827. Retrieved from http://www.ikpresse.com/index.php/PCBMB/article/view/4752
Section
Original Research Article

References

Yıldırım M, Barutçular C, Hossain A, Koç M, Dizlek H, Akinci C, Toptaş I, Basdemir F, Islam MS, EL Sabagh A. Assessment of the grain quality of wheat genotypes grown under multiple environments using GGE biplot analysis. Fresenius Environmental Bulletin. 2018;27(7):4830-4837.

Aït El Mekki A. Les notes d’analyse du Ciheam. 2006;7.

Jeschke WD. John Wiley and Sons, Inc. 1984;37-64.

Rausch T, Kirsch M, Low R, Lehr A, Viereck R, Zhigang A. J. Plant Physiol. 1996;148:425-433.

Alghamdi SS. Heterosis and combining ability in a diallel cross of eight faba bean (Vicia faba L.) genotypes. Asian J. Crop Sc. 2009;1:66-76.

Out H, Celiktas V, Duzenli S, Hossain A, El Sabagh A. Germination and early seedling growth of five durum wheat cultivars (Triticum durum desf.) is affected by different levels of salinity. Fresenius Environmental Bulletin. 2018;27(11):7746-7757.

Denden M, Bettaieb T, Salhi A, Mathlouthi M. Tropicul. 2005;23:220-225.

Radhouane L. C. R. Biol. 2008;331:278-286.

Xie J, Dai Y, Mu H, De Y, Chen H, Wu Z, Ren W. Physiologicaland biochemical responses to NACl salinity stress in three roegneria (Poaceae) species. Pakistan Journal of Botany. 2016;48: 2215-2222.

Abdelkader Dz, Saleh A. Protection induced by external Ca+2 application on proline accumulation, ion balance, photosynthetic pigments, protein and ABA concentration of mustard seedlings (Sinapis alba L.) under salinity stress. Egyp. J. Biol. 2002;4:14-22.

Shabala L, Cuin T, Newman I, Shabala S. Planta. 2005;222:1041–1050.

Martinez JP, Silva H, Ledent JF, Pinto M. Euro. J. Agro. 2007;26:30-38.

Munns R, Tester M. Mechanisms of salinity tolerance. Annu. Rev. Plant Biol. 2008;59:651-681.

Sairam RK, Rao KV, Srivastava GC. Differential response of wheat genotypes to long term salinity stress in relation to oxidative stress, antioxidant activity and osmolyte concentration. Journal of Plant Science. 2002;163:1037-1046.

Goudarzi M, Pakniyat H. Evaluation of wheat cultivars under salinity stress based on some agronomic and physiological traits. Journal of Agriculture and Social Science. 2008;4:35-8.

Ashraf M, McNeilly T. Crit. Rev. Plant Sci. 2004;23:157-174.

Shi H, Ishitani M, Wu SJ, Kim CS, Zhu JK. The Arabidopsis thaliana salt tolerance gene SOS1 encodes a putative Na+/H+ antiporter. Proc. Natl. Acad Sci. 2000;97:6896-6901.

Wang J, Li X, Liu Y, Zhao X. J. Plant Physiol. 2010;167:1145-1151.

Kwak JM, Murata Y, Baizabal-Aguirre VM, Merrill J, Wang M, Kemper A, Hawke SD, Tallman G, Schroeder JI. Plant Physiol. 2001;127:473-485.

Mallek-Maalej E, Boulasnem F, Ben Salem M. Cah. Agric. 2004;12153-6.

Alaoui MM, El Jourmi L, Ouarzane A, Lazar S, El Antri S, Zahouily M, Hmyene A. Effet du stress salin sur la germination et la croissance de six variétés marocaines de blé (Effect of salt stress on germination and growth of six Moroccan wheat varieties). J. Mater. Environ. Sci. 2013;4:997.

Hoagland DR, Arnon DI. The effect of nitrogen and phosphorus ratios and electrical conductivity on plant growth. California Agr. Expt. Sta. Circ. 1950;347.

Spagnoletti-Zeuli TL, Qualset PO. Plant Breed. 1990;105:189-202.

Barrs H. Water deficit and plant growth. New York, USA: Academic Press. 1968;235-368.

Clarck JM, Mac-Caig TN. Excised leaf water relation capability as an indicator of drought resistance of Triticum genotypes. Can. J. Plant Sci. 1982;62:571-576.

Arnon DI. Copper enzymes in isolated chloroplasts. Polyphenoloxidase in Beta vulgaris. Plant Physiol. 1949;24:1-15.

Premachandra GS, Saneoka H, Fujita K, Ogata S. Cell-membrane stability and leaf water relations as affected by nitrogen nutrition under water-stress in maize. J. Soil Sci. Plant Nutr. 1990;36:653-659.

Lutts S, Kinet JM, Bouharmont J. J. Exp. Bot. 1995;46:1843–1852.

Dubois M, Gilles KA, Hamilton JK, Rebers PA, Smith F. Anal. Chem. 1956;28:350-356.

Dreier W, Göring M. Win Z der HU Berlin, Nath. Naturwiss. R. 1974;23:641-644.

Bennaceur M, Rahmoun C, Sdiri H, Medahi M, Selmi M. Sécheresse. 2001;12:167-174.

Yassin M, El Sabagh A, Mekawy AMM, Islam MS, Hossain A, Barutcular C, Alharby H, Bamagoos A, Liu L, Ueda A, Saneoka H. Comparative performance of two bread wheat (Triticum aestivum L.) genotypes under salinity stress. Applied Ecology and Environmental Research. 2019;17(2):5029-5041.

Chartzoulakis K, Klapaki G. Sci. Hortic. 2000;86:247-260.

Lépengué AN, Mouaragadja I, Chérif M, M’batchi B, Aké S. Afri. Sc. 2009;5:97-110.

IbnMaaouia-Houimli S, Denden M, Dridi-Mouhandes B, BenMansour-Gueddes S. Tropicultura. 2011;29:75-81.

Ben Ahmed H, Arafet M, Zid E. C. R. Biol. 2008;331:164-170.

Rahman M, Zahan F, Sikdar S, EL Sabagh A, Barutçular C, Islam MS, Ratnasekera D. Evaluation of salt tolerance mungbean genotypes and mitigation of salt stress through potassium nitrate fertilization. Fresen. Environ. Bull. 2017;26:7218- 7226.

Turan H, Sönmez G, Çelik MY, Yalçin M. J. Mus. Foods. 2007;18:380-390.

Taffouo VD, Wamba FO, Youmbi E, Nono GV, Amougou A. Int. J. Bota. 2010;6:53-58.

Benamar B, Daguin F, Kaid-Harche M. C. R. Biol. 2009;332:752-758.

Chakib A, Labhilili M, Brahmi K, Jlibene M, Nasrallah N, Filali-Maltouf A. C. R. Biol. 2002;325:1097-1109.

Scofield T, Evans J, Coook MG. Aust. J. Plant Physiol. 1988;4:785-797.

Ndayiragije A, Lutts SD. Do exogenous polyamines have an impact on the response of a salt sensitive rice cultivar to NaCl? J. Plant Physiol. 2006;163:506-16.

Sairam RK, Deshmukh PS, Saxena DC. Role of antioxidant systems in wheat genotypes tolerance to water stress. Biol. Plant. 1998;41:384-394.

Benderradji L, Bouzerzour H, Kellou K, Brini F, Masmoudi K, Djekoun A. Sci. Technol. 2010;32:23-30.

Jardin P, Lejour C. Jo. Lib. Euro. 1991;75.

Parida AK, Das AB. Ecoto. Env. Saf. 2005;60:324–349.

Wang Y, Nil N. J. Hort. Sci. Biot. 2000;75:623–627.

Wang XD, Su YA. Nat. Neur. 2013;16:706–713.

Ashraf M, Tufail M. J. Agro. Crop Sci. 1995;174:351–362.

Dubos C. Thèse de Doctorat en Biologie Forestière, Université Henri Poincaré; 2001.

Townsend AM. J. Am. Soc. Hortic. Sci. 1980;105(6):878- 883.

Sells GD, Koeppe DE. Plant Physiol. 1981;68:1058-1063.

Hsiao TC. Plant responses to water stress. Annu. Rev. Plant Physiol. 1973;24:519-570.

Heuer L. Parental stressors in a pediatric intensive care unit. Pediatric Nursing. 1993;19(2):128-131.

Kamata T, Uemura M. Cryo. Letters. 2004;25:311-322.

Hincha DK. High concentrations of the compatible solute glycinebetaine destabilize model membranes under stress conditions. Cryobiol. 2006;53:58-68.

Johanson JG, Cheeseman JM. Plant Physiol. 1983;73:153-156.

Mafakheri M, Siosemardeh A, Bahramnejad B, Struik PC, Sohrabi E. Effect of drought stress on yield, proline and chlorophyll contents in three chickpea cultivars. Australian Journal Crop Science. 2010;4:580-585.

Lauchli A. John Wiley, New York. 1984;171-187.

Perez-Alfocea F, Balibrea ME, Alarcon JJ, Bolarin MC. J. Plant Physiol. 2000;156:367-374.

Walker RR. Ausl. J. Plant Physiol. 1986;13:293-303.

De Lacerda CF, Cambraia J, Oliva MA, Ruiz HA. Env. Exp. Botany. 2005;54:69-76.

Benderradji L, Brini F, Amar SB, Kellou K, Azaza J, Masmoudi K, Bouzerzour H, Hanin M. Sodium transport in the seedlings of two bread wheat (Triticum aestivum L.) genotypes showing contrasting salt stress tolerance. Australian Journal Crop Science. 2011;5:233-241.

Mekawy AMM, Abdelaziz MN, Ueda A. Apigenin pretreatment enhances growth and salinity tolerance of rice seedlings. Plant Physiology and Biochemistry. 2018;130:94-104.

Sairam RK, Rao KV, Srivastava GC. Plant Sci. 2002;163:1037-1046.