Main Article Content



This work focused on the evaluation and identification of tolerant varieties of sugarcane against salt stress. In this regard, we are comparing the accumulation of ions and defining the (exclusion/inclusion) role of sodium or chloride. For this purpose, the cuttings of five sugarcane varieties were irrigated, with different concentrations of NaCl. The evaluated measurements are the dry biomass, the content in mineral elements Na+, Cl-, K+, and Na+/K+ ratio, in both leaves and roots. The results showed that salinity, has a depressive effect on dry biomass production, in the five varieties tested, and the effect varies with the intensity of stress. In terms of nutrition, the salinity significantly increased the level of chlorides and sodium in the genotypes tested, thus reduced the K+ content. Consequently, the presence of Na+ prevents the absorption of K+, hence the decrease in the K+/Na+ ratio. However, the ratio Na+ leaf/root and Cl- at the leaf/root levels, shows that the sodium content at the root level exceeds the one at leaf level. The results also indicate a varietal difference in salt stress response; was revealed between the varieties studied. Concerning the effect of the variety, three CP varieties are the least affected by salinity, indicating their tolerance. Finally, it may be confirmed from this study, that the adaptation ability to salinity is correlated with the genotype, and that it is related to ion transport properties and the ability to regulate and ionic compartmentalization.

Cl-, exclusion/inclusion, génotype, K , K /Na , Na , Saccharum officinarum, salinity, tolerance.

Article Details

How to Cite
Original Research Article


Akram R, Fahad S, Masood N, Rasool A, Ijaz M, ZahidIhsan M, Maqbool MM, Ahmad S, Hussain S, Ahmed M, Kaleem S, Refat S, Mubeen M, Saud S, Kamran M. Chapter 4 - Plant growth and morphological changes in rice under Abiotic stress. Advances in Rice Research for Abiotic Stress Tolerance. 2019;69-85.

Shrivastava P, Kumar R. Soil salinity: A serious environmental issue and plant growth promoting bacteria as one of the tools for its alleviation. Saudi Journal of Biological Sciences. 2015; 22:123-131.

Hasan R, Kawasaki M, Taniguchi M, Miyake H. The damage of root, leaf and chloroplast ultrastructure on maize seedlings caused by salinity stress. Earth and Environmental Sciences. 2018;197.

Hernández JA. Salinity tolerance in plants: Trends and perspectives. Int. J. Mol. Sci. 2019; 20:2408.

Khanam T, Akhtar N, Halim M, Hossain F. Effect of irrigation salinity on the growth and yield of two Aus rice cultivars of Bangladesh. Jahangirnagar University Journal of Biological Sciences. 2018;7(2): 1-12.

FAO. Maroc, Géographie, climat et population; 2015.

Shehzad M, qurahman S, Ditta A, Iqbal MS, Malik TH, Hussain SB, Khan MI, Ramzan M. (). Effet du stress dû à la salinité sur la croissance du coton et le rôle de la sélection assistée par marqueurs et des pratiques agronomiques biologique et physique pour la tolérance à la salinité. Schol Reps. 2019;4(1).

Tester M, Davenport R. Na+ tolerance and Na+ transport in higher plants. Ann. Bot. 2003; 91:503-527.

Assaha DVM, Ueda A, Saneoka H, Al-Yahyai R, Yaish MW. The role of Na+ and K+ transporters in salt stress adaptation in glycophytes. Front. Physiol. 2017;8:509.

Mallek-Maalej E, Boulasnem F, Ben Salem M. Effet de la germination de graines de céréales cultivées en Tunisie. Cahiers Agriculture. 2004;12:153-156.

Mrani Alaoui M, El Jourmi L, Ouarzane A, Lazar S, El Antri S, Zahouily M, Hmyene A. Effet du stress salin sur la germination et la croissance de six variétés marocaines de blé (Effect of salt stress on germination and growth of six Moroccan wheat varieties). J. Mater. Environ. Sci. 2013;4:997-1004.

Zhao D, Li YR. Climate change and sugarcane production: Potential impact and mitigation strategies. International Journal of Agronomy. 2015;10.

Grieve CM, Grattan SR, Maas EV. Plantes tolérance au sel. En WW. Wallender et KK. Tanji (eds.) Manuel ASCE et Reports on Engineering Practice. Évaluation et gestion de la salinité agricole (2e édition). ASCE, Reston, VA. Chapitre. 2012;13:405-459.

Jaarsma R, de Vries RSM, Boer AH. Effect of salt stress on growth, Na+ accumulation and proline metabolism in potato (Solanum tuberosum) cultivars. Plos One. 2013;8(3):60183.

Hoagland DR, Arnon DI. The water-culture method of growing plants without soil. Circular No. 347.California Agricultural Experiment Station. University of California. Berkeley, CA, USA; 1950.

Cotlove E. Determination of Cl- in biological material in: GlickD, ed. Methods of biochemical analysis. Intersience Pub New York. 1965;277-392.

Parvaiz A, Azooz MM, Prasad MNV. Nutrient uptake and symbiotic interactions. Ecophysiology and Responses of Plants under Salt Stress. 2013;188.

Rochdi A, Lemsellek J, Bousarhal A, Rachhidai A. Evaluation sous serres de la tolérance à la salinité de quelques portes-greffes d’agrumes: Citrus aurantium et deux hybrides de Poncirirustrifoliata (Poncirus X Citrus sinensiset Poncirus X Mandadarinier sunki). Biotechno. Agron. Soc. Environ. 2004;9(1):65-73.

Nahar A, Mannan MA, Mamun MAA, Ghosh TK. Growth and yield performance of foxtail millets under salinity. Bangladesh Agron. J. 2018;21(1):51-59.

Ben Ahmed A, Manaa A, Zid E. Tolérance à la salinité d’une poaceae à cycle court: la sétaire (Setaria verticillata L.) Unité d’écophysiologie et nutrition des plantes, université Tunis-El-Manar. C. R. Biologies. 2008;331:164–170.

Benamar B, Daguin F, Kaid-Harche M. Effect du stress salin sur la germination et la croissance in vitro du pistachier (Pistacia vera L.). Comptes Rendus Biologies. 2009;332:752-758.

Niu G, Rodriguez DS, Starman T. Response of bedding plants to saline water irrigation. Hort Science. 2010;45(4):628–636.

Baybordy A. Effects of salinity and N on the growth, photosynthesis and status of canola (Brassica napus L.). Natural Sci. Biol. 2010; 2:92-97.

Rifat S, Karmoker JL. Effects of NaCl stress on accumulation of K+, Na+, Cl-, NO3-, sugar and proline contents in the seedlings of triticale-I. Department of Botany, University of Dhaka, Bangladeh. J. Bot. 2013; 42:189-194.

Mansoori M, Fazel MA, Jorfi A, Mashal M, Mashal M. Effects of salinity stress on nutrient uptake of sugarcane genotypes. Nova Journal of Engineering and Applied Sciences. 2014;2(4):1-8.

Chakraborty K, Chattaopadhyay Kr, Nayak L, Ray S, Yeasmin L, Jena P, Gupta S, Mohanty SK, Swain P, Sarkar RK. Ionic selectivity and coordinated transport of Na+ and K+ in flag leaves render differential salt tolerance in rice at the reproductive stage. 2019;250(5):1637–1653.

Hussain S, Shaukat M, Ashraf M, Zhu C, Jin Q, Zhang J. Salinity stress in arid and semi-arid climates: Effects and management in field crops. Climate Change and Agriculture. 2019;13.

Bezouwa Roel FHM, Janssen EM, shrafuzzamana MD, Ghahramanzadeh R, Kilian B, Graner A, Visser RGF, Linden CG. Shoot sodium exclusion in salt stressed barley (Hordeum vulgare L.) is determined by allele specific increased expression of HKT1;5. Journal of Plant Physiology. 2019;241.

Saddiq MS, Afzal I, Basra SMA, Zulfiqar A, Ibrahim AMH. Sodium exclusion is a reliable trait for the improvement of salinity tolerance in bread wheat. Archives of Agronomy and Soil Science. 2018; 64:272-284.

Chiconato DA, Junior GSS, Santos DMM, Munns R. Adaptation of sugarcane plants. Environmental and Experimental Botany. 2019;162:201-211.

Slama F. Effect of NaCl on the growth and the mineral nutrition: Comparative study of six cultivated species. Academic Dissertation (Thesis), Tunisia. 1982;241.

Hamrouni L, Hanana M, Abdelly C, Ghorbel A. Exclusion du chlorure et inclusion du sodium: deux mécanismes concomitants de tolérance à la salinité chezla vigne sauvage Vitis viniferasub sp. Sylvestris (var.‘Séjnène̓). Biotechnol. Agron. Soc. Environ. 2011;15(3):387-400.

Gandonou CB, Bada F, Gnancadja SL, Abrini J, Skali-Senhaji N. Effects of NaCl on Na+, Cl- and K+ ions accumulation in two sugarcane (Saccharum sp.) cultivars differing in their salt tolerance. International Journal of Plant Physiology and Biochemistry. 2011; 3:155-162.

Awais Farooq M. The potential of breeding Gossypium hirsutum L. for salinity tolerance. Philosophy in Plant Breeding and Genetics Faculty of Agriculture University of Agriculture Faisalabad, Pakistan. 2019;20.

Plaut F, Meinzer C, Federman E. Leaf development, transpiration and ion uptake and distribution in sugarcane cultivars grown under salinity. Plant Soil. 2000; 218:59-69.

El Yacoubi H, Ayolié K, Rochdi A. In vitro cellular salt tolerance of Troyer Citrange: Changes in growth and solutes accumulation in callus tissue. Int. J. Agric. Biol. 2010; 12:187-193.

Almeida DM, Oliveira MM, Saibo NJM. Regulation of Na+ and K+ homeostasis in plants: Towards improved salt stress tolerance in crop plants. Genetics and Molecular Biology. 2017;40(1):326-345.

Bouatrous Y, Yakhlef N. Effect de phytohormones (AIA, GA3) sur la sélectivité K+/NA+ et la résistance stomatique dans l'adaptation à la salinité du blé dur (Triticum durum DESF.) et une espèce apparentée. Lebanese Science Journal. 2013;15(2):53-72.

Wahid A. Analysis of toxic and osmotic effects of sodium chloride on leaf growth and economic yield of sugarcane. Bot Bull Acad Sin. 2004; 45:133-141.

García M, Medina E. Accumulation of ions and organicsolutes in twogenotypes of sugarcane stressed with simple salt sorcalcium-supplemented. Bioagro. 2009;21(1).

Shabala S, Igor Pottosin I. Potassium and potassium-permeable channels in plant salt tolerance. From Book Ion Channels and Plant Stress Responses. 2014;87-110.

Akhtar S, Wahid A, Rasul E. Emergence, growth and nutrient composition of sugarcane sprouts under NaCl salinity. Biologia Plantarum. 2003;46(1):13-116.

El Mahi H, Hormaeche JP, De Luca A, Villalta I, Espartero J, Arjona GF, Fernández JL, Bundó M, Mendoza I, Mieulet D, Lalanne E, Lee SY, Yun D, Guiderdoni E, Aguilar M, Leidi EO, Pardo JM, Quintero FJ. A critical role of sodium flux via the plasma membrane Na+/H+ exchanger SOS1 in the salt tolerance of rice. Plant Physiol. 2019; 180:1046–1065.

Yang HB, Yu YC, Wang Y, Xu XF, Han ZH. Distribution and re-transportation of sodium in three Malus species with different salt tolerance. Plant Physiology and Biochemistry. 2019;136: 162-168.

Wang H, Wu Z, Zhou Y, Han J, Shi D. Effects of salt stress on ion balance and nitrogen metabolism in rice. Plant Soil Environ. 2012; 58:62-67.

Majid M, Ali A, Essia B. Effect of salinity on sodium and chloride uptake, proline and soluble carbohydrate contents in three alfalfa varieties. J. Agric. Veter. Sci. 2012; 1:01-06.

Tavakkoli E, Rengasamy P, Glenn McDonald K. High concentrations of Na+ and Cl– ions in soil solution have simultaneous detrimental effects on growth of faba bean under salinity stress. Journal of Experimental Botany. 2010;61(15):4449–4459.

Wei P, Che B, Shen L, Cui Y, Wu S, Cheng C, Liu F, Li MW, Yu B, Lam H. Identification and functional characterization of the chloride channel gene, GsCLC-c2 from wild soybean. Plant Biology. 2019; 19:121.

Geilfus CM. Chloride from nutrient to toxicant. Plant and Cell Physiology. 2018; 59:877–886.

Haouala F, Ferjani H, Ben El Hadj S. Effet de la salinité sur la répartition des cations (Na+, K+ et Ca2+) et du chlore (Cl-) dans les parties aériennes et les racines du ray grass anglais du chiendent. Biotechnol. Agron. Soc. Environ. 2007;11(3):235- 244.

Pongprayoon W, Tisarum R, Theerawittaya C, Cha-um S. Evaluation and clustering on salt-tolerant ability in rice genotypes (Oryza sativa L. subsp. indica) using multivariate physiological indices. Physiology and Molecular Biology of Plants. 2019;25(2):473–483.

El fakhri M, Mahboub S, Benchekroun M, Nsarellah N. Effet du stress hydrique sur la répartition ionique dans les feuilles et les racines du blé dur (Triticum Durum). Nature et Technologie. 2011; 5:66-71.

Javaid T, Farooq MA, Akhtar J, Saqib ZA, Anwar-ul-Haq M. Silicon nutrition improves growth of salt-stressed wheat by modulating flows and partitioning of Na+, Cl− and mineral ions. Plant Physiology and Biochemistry. 2019; 141:291–299.

Ashraf M, Afzal M, Ahmad R, Maqsood MA, Shahzad SM, Tahir MA. Growth response of the salt-sensitive and the salt-tolerant sugarcane genotypes to potassium nutrition under salt stress. Archives of Agronomy and Soil Science. 2012;58(4).

Kumar S, Beena AS, Awana M, Singh A. Physiological, biochemical, epigenetic and molecular analyses of wheat (Triticum aestivum) genotypes with contrasting salt tolerance. Front. Plant Sci. 2017; 8:1151.

Mirza H, Borhannuddin Bhuyan MHM, Nahar K, Hossain MDS, Al Mahmud J, Shahadat Hossen MD, Masud AAC, Moumita, Fujita M. Potassium: A vital regulator of plant responses and tolerance to Abiotic stresses. Agronomy. 2018;8(3):31.

R’him T, Tlili I Hnan I, Ilahy R, Benali A, Jebari H. Effet du stress salin sur le comportement physiologique et métabolique de piment J. Appl. Biosci. 2013; 66:5060-5069.

Khan MSA, Karim MA, Haque MM, Karim AJMS, Mian MAK. Effect of salt and water stress on gas exchange, dry matter production and K+/Na+ ions selectivity in soybean. Bangladesh Journal of Agricultural Research. 2017;42(3):487-501.

Kamyab M, Kafi M, Shahsavand H, Goldani M, Shokouhifar F. Exploring ion homeostasis and mechanism of salinity tolerance in primary tritipyrum lines (Wheat× Thinopyrum bessarabicum) in the presence of salinity. AJCS. 2016;10(7):911-919.

Reddy INBL, Kim S, Kim B, Yoon I, Kwon T. Identification of rice accessions associated with K+/Na+ ratio and salt tolerance based on physiological and molecular responses. Science Direct Rice Science. 2017;24(6):360-364.

Assaha DVM, Ueda A, Saneoka H, Al-Yahyai R, Yaish MW. The role of Na+ and K+ transporters in salt stress adaptation in glycophytes. Front. Physiol. 2017; 8:509.

Al-Khateeb SA. Effect of calcium/sodium ratio on growth and ion relations of alfalfa (Medicago sativa L.) seedling grown under saline condition. Journal of Agronomy. 2006;5(2):175-181.

Ashraf M. Relationships between leaf gas exchange characteristics and growth of differently adapted populations of blue panic grass (Panicum antidotale Retz.) under salinity or water logging. Plant Sci. 2003;165:69-75.