CHARACTERIZATION OF ENDOPHYTIC Paenibacillus polymyxa STRAIN K19 FROM Urtica dioica AS PGPB

Main Article Content

DAHAIEH NAOUFAL
HACHAM AMINE
OUNINE KHADIJA

Abstract

This work investigates the performance of endophytic bacterial strains of Urtica dioca as a growth-promoting bacteria and biocontrol agent. The obtained results indicated that the strain of K19 isolated from U. dioica root, allowed to fix nitrogen and produce IAA. A conventional test indicated that K19 behaved in the same way as the Paenibacillaceae family. Molecular identification using sequence analysis of 16S rRNA showed that K19 exhibited higher similarity, to the Paenibacillus polymyxa strain IGS117. The isolate K19 was unable to solubilize the calcium triphosphate, but, was able to antagonize a wide spectrum of phytopathogenic fungus. The K19 has also shown the ability to improve the development of the tomato root system by 36.36%. This study revealed characteristics, of Paenibacillus polymyxa K19 which, consequently, merit confirming its potential importance as a PGPB.

Keywords:
Paenibacillus polymyxa, PGPB, Urtica dioica, antagonism, phytopathogen fungus, endophytic bacteria.

Article Details

How to Cite
NAOUFAL, D., AMINE, H., & KHADIJA, O. (2019). CHARACTERIZATION OF ENDOPHYTIC Paenibacillus polymyxa STRAIN K19 FROM Urtica dioica AS PGPB. PLANT CELL BIOTECHNOLOGY AND MOLECULAR BIOLOGY, 20(21-22), 1032–1041. Retrieved from https://www.ikpresse.com/index.php/PCBMB/article/view/4800
Section
Original Research Article

References

Holliday P. A dictionary of plant pathology. Cambridge University Press, Cambridge; 1989.

Schulz B, Boyle C. What are endophytes? Microbial Root Endophytes (Schulz BJE, Boyle CJC & Sieber TN, eds). Springer-Verlag, Berlin. 2006;1-13.

Gray EJ, Smith DL. Intracellular and extracellular PGPR: Commonalities and distinctions in the plant-bacterium signaling processes. Soil Biology & Biochemistry. 2005;37:395-412.

Rosenblueth M, Martínez-Romero E. Bacterial endophytes and their interaction with hosts. Molecular Plant-Microbe Interactions. 2006;19:827-837.

Hallmann J, Berg B. Spectrum and population dynamics of bacterial root endophytes. In: Schulz, B.J.E., Boyle, C.J.C., Sieber, T.N. (Eds.), Microbial Root Endophytes. Springer, Berlin Heidelberg. 2007;15-31.

Ryan RP, Germaine K, Franks A, Ryan DJ, Dowling DN. Bacterial endophytes: Recent developments and applications. FEMS Microbiol Lett. 2008;278:1–9.

Conn KL, Nowak J, Lazarovitz G. A gnotobiotic bioassay for studying interactions between potato and plant growth-promoting rhizobacteria. Canadian Journal of Microbiology. 1997;43:801- 808.

Chanway CP, Shishido M, Nairn J, Jungwirth S, Markham J, Xiao G, Holl FB. Endophytic colonization and field responses of hybrid spruce seedlings after inoculation with plant growth-promoting rhizobacteria. Forest Ecology Management. 2000;133:81-88.

Timmusk S, Grantcharova N, Wagner EGH. Paenibacillus polymyxa invades plant roots and forms biofilms. Appl Environ Microbiol. 2005;71:7292–7300.

Ravi AV, Musthafa KS, Jegathammbal G, Kathiresan K, Pandian SK. Screening and evaluation of probiotics as a biocontrol agent against pathogenic Vibrios in marine aquaculture. Lett Appl Microbiol. 2007;45:219–223.

Singh HP, Singh TA. The interaction of rockphosphate, Bradyrhizobium, vesicular-arbuscular mycorrhizae and phosphate-solubilizing microbes on soybean grown in a sub-Himalayan mollisol. Mycorrhiza. 1993;4:37–43.

Gouzou L, Burtin G, Philippy R, Bartoli F, Heulin T. Effect of inoculation with Bacillus polymyxa on soil aggregation in the wheat rhizosphere: Preliminary examination. Geoderma. 1993;56:479– 491.

Heulin T, Berge O, Mavingui P, Gouzou L, Hebbar KP, Balandreau J. Bacillus polymyxa and Rahnella aquatilis, the dominant N2-fixing bacteria associated with wheat rhizosphere in French soils. Eur J Soil Biol. 1994;30:35–42.

Rosado AS, Seldin L. Production of a potentially novel antimicrobial substance by Bacillus polymyxa. World J Microb Biot. 1993;9:521-528 .

Pichard B, Lame JP, Thouvenot D. Gavaserin and saltavalin, new peptide antibiotics produced by Bacillus polymyxa. FEMS Microbiol Lett. 1995;133:215– 218.

Kajimura Y, Kaneda M. Fusaricidin A, a new depsipeptide antibiotic produced by Bacillus polymyxa KT-8 taxonomy, fermentation, isolation, structure elucidation and biological activity. J Antibiot. 1996;49:129–135.

Son SH, Khan Z, Moon HS, Kim SG, Moon Y, Choi DR, Kim YH. Nematicidal activity of secondary metabolites of a plant growth promoting rhizobacterium, Paenibacillus polymyxa. Russ J Nematol. 2007;15:95–100.

Bergey´s Manual of Systematic Bacteriology; 2009.

Sanger F, Nicklen L, Coulson R. DNA sequencing with chain-terminating inhibitors. Proc. Nati. Acad. Sci. 1977; 74(12):5463-5467.
Available:http://www.ncbi. nlm.nih.gov/genbank

Saitou N, Nei M. The neighbor-joining method: A new method for reconstructing phylogenetic trees. Mol Biol Evol. 1987;4: 406–25.

Kluge AG, Farris JS. Quantitative phyletics and the evolution of anurans. Syst Zool. 1969;18:1–32.

Tamura K, Dudley J, Nei M, Kumar S. MEGA4: Molecular evolutionary genetics analysis (MEGA) software version 4.0. Mol Biol Evol. 2007;24:1596–9.

Doebereiner J. Isolation and identification of aerobic nitrogen fixing bacteria. In: Alef K, Nannipieri P, editors. Methods in applied soil microbiology and biochemistry. Cambridge, MA, USA: Academic. 1994;134–41.

Bashan Y, Holguin G, Lifshitz R. Isolation and characterization of plant growth-promoting rhizobacteria. In: Glick BR, Thompson JE, editors. Methods in plant molecular biology and biotechnology. BocaRaton, FL, USA. CRC Press. 1993; 331–45.

Gravel V, Antoun H, Tweddell RJ. Growth stimulation and fruit yield improvement of greenhouse tomato plants by inoculation with Pseudomonas putida or Trichoderma atroviride: Possible role of indole acetic acid (IAA). Soil Biol. Biochem. 2007;39: 1968–1977.

Goldstein AH, Liu ST. Molecular cloning and regulation of a mineral phosphate solubilizing gene from Erwinia herbicola. Bio/Technology. 1987;5:72–74.

Dennis, Webster. Antagonistic properties of species groups of Trichoderma II. Production of non-volatile antibiotics. Trans. Br. Mycol. Soc. 1971;57:41-48.

Vincent JM. Distortion of fungal hyphae in the presence of certain inhibitors. Nature. 1927;59:850.

Ash C, Priest FG, Collins MD. Molecular identification of rRNA group 3 bacilli (Ash, Farrow, Wallbanks and Collins) using a PCR probe test. Antonie Leeuwenhoek. 1993;64:253–260.

Beck HC, Hansen AM, Lauritsen FR. Novel pyrazine metabolites found in polymyxin biosynthesis by Paenibacillus polymyxa. FEMS Microbiol Lett. 2003;220: 67–73.

Li J, Beatty PK, Shah S, Jensen SE. Use of PCR-targeted mutagenesis to disrupt production of Fusaricidin-type antifungal antibiotics in Paenibacillus polymyxa. Appl Environ Microbiol. 2007;73:3480–3489.

Beatty PH, Jensen SE. Paenibacillus polymyxa produces fusaricidin-type antifungal antibiotics active against Leptosphaeria maculans, the causative agent of blackleg disease of canola. Can J Microbiol. 2002;48:159–169.

Mavingui P, Heulin T. In vitro chitinase and antifungal activity of a soil, rhizosphere and rhizoplane population of Bacillus polymyxa. Soil Biol Biochem. 1994;26: 801–803.

Kim YK. Biological control of phyto-phthora blight of red pepper by antagonistic Bacillus polymyxa AC-1. PhD Thesis. Seoul, Korea, Seoul National University. 1995;78.

Shishido M, Massicotte HB, Chanway CP. Effect of plant growth promoting Bacillus strains on pine and spruce seedling growth and mycorrhizal infection. Ann Bot. 1996; 77:433–441.

Nielsen P, Sorensen J. Multi-target and medium-independent fungal antagonism by hydrolytic enzymes in Paenibacillus polymyxa and Bacillus pumilus strains from barley rhizosphere. FEMS Microbiol Ecol. 1997;22:183–192.

Piuri M, Sanchez-Rivas C, Ruzal SM. A novel antimicrobial activity of a Paenibacillus polymyxa strain isolated from regional fermented sausages. Lett Appl Microbiol. 1998;27:9–13.

Dijksterhuis J, Sanders M, Gorris LGM, Smid EJ. Antibiosis plays a role in the context of direct interaction during antagonism of Paenibacillus polymyxa towards Fusarium oxysporum. J Appl Microbiol. 1999;86:13–21.

Helbig J. Biological control of Botrytis cinerea Pers. ex Fr. in strawberry by Paenibacillus polymyxa (isolate 18191). J Phytopathol. 2001;149:265–273.

Li B, Ravnskov S, Xie G, Larsen J. Biocontrol of Pythium damping-off in cucumber by arbuscular mycorrhiza-associated bacteria from the genus Paenibacillus. Biocontrol. 2007;52:863–875.

Khan Z, Kim SG, Jeon YH, Khan HU, Son SH, Kim YH. A plant growth promoting rhizobacterium, Paenibacillus polymyxa strain GBR-1, suppresses root-knot nematode. Bioresour Technol. 2008;99: 3016–3023.

Lindberg T, Granhall U, Tomenius K. Infectivity and acetylene reduction of diazotrophic rhizosphere bacteria in wheat (Triticum aestivum) seedlings under gnotobiotic conditions. Biol Fertil Soils. 1985;1:123–129.

Lebuhn M, Heulin T, Hartmann A. Production of auxin and other indolic and phenolic compounds by Paenibacillus polymyxa strains isolated from different proximity to plant roots. FEMS Microbiol Ecol. 1997;22:325– 334.

Lee SH, Cho YE, Park SH, Balaraju K, Park JW, Lee SW, Park K. An antibiotic fusaricidin: A cyclic depsipeptide from Paenibacillus polymyxa E681 induces systemic resistance against Phytophthora blight of red-pepper. Phytoparasitica. 2013; 41:49–58.

Martin JF, Demain AL. Control of antibiotic biosynthesis. Microbial Rev. 1980;44:230-251.

Eastman AW, Heinrichs DE, Yuan ZC. Comparative and genetic analysis of the four sequenced Paenibacillus polymyxa genomes reveals a diverse metabolism and conservation of genes relevant to plant-growth promotion and competitiveness. BMC Genomics. 2014;15:851.

Ladha JK, deBruijn FJ, Malik KA. Introduction: assessing opportunities for nitrogen fixation in rice a frontier project. Plant Soil. 1997;194:1–10.

Barazani O, Friedman J. Effect of exogeneously applied L-tryptophan on allelochemical activity of plant growth promoting rhizobacteria (PGPR). J. Chem. Ecol. 2000;26:343–349.

Maleki M, Mostafaee S, Mokhtarnejad L, Farzaneh M. Characterization of Pseudomonas fluorescens strain CV6 isolated from cucumber rhizosphere in Varamin as a potential biocontrol agent. Australien Journal Crop Science. 2010; 4(9):676-68.

Patten CL, Glick BR. Role of Pseudomonas putida indole acetic acidin development of the host plant root system. Appl Env Microbiol. 2002;68: 3795–801.

Spaepen S, Vanderleyden J, Remans R. Indole-3-acetic acid in microbial and microorganism-plant signaling. FEMS Microbiol Rev. 2007;31:425-48.

Stephens PM, Crowley JJ, O’Connell C. Selection of pseudomonad strain inhibiting Pythium ultimim on sugar beet seeds in soil. Soil Biology and Biochemistry. 1993;25: 1283–1288.